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Abstract. A renormalisation group method is presented to analyse the multifractal structure 
of the current distribution in random linear resistor networks just above the percolation 
threshold. The recursion relation for the current distribution is given under the renonnalisa- 
tion transformation. The distribution function of the current is derived with the use of the 
recursion relation. The fragmentation of the current is described as a random multiplicative 
process. An infinite set of exponents is calculated to scale each of the moments of the 
current distribution. The a-f spectrum is derived from the Legendre transform of these 
exponents. Our exponents obtained by the relatively small-cell renormalisation are very 
close to the previous simulation data. 

1. Introduction 

Recently, there has been increasing interest in the critical behaviour of random resistor 
networks. Different properties of such systems are found to be described by different 
critical exponents or fractal dimensions. It has been found very recently that electrical 
properties of self-similar resistor networks should be characterised by an infinite set 
of exponents (Rammal et a1 1985a, b, de Arcangelis et a1 1985a, b, 1986). Nagatani 
(1987a), Fourcade and Tremblay (1987) and Meir and Aharony (1988) have studied 
the multifractal structure of the current distribution in random self-similar resistor 
networks. In many cases, specific members of families of fractal dimensions represent 
geometrical and physical substructures of the underlying self-similar structure. For 
example, the kth moment of the currents in the percolating network is directly related 
to the number of singly connected bonds (k  + CO), the resistance (k  = 2) and the number 
of the backbone or current-carrying bonds ( k  = 0). The fact that an infinite set of 
exponents is necessary to characterise completely the properties of self-similar resistor 
networks has analogues in most fields, such as turbulence (Mandelbrot 1974, Benzi et 
a1 1984), diffusion-limited aggregation (Halsey et a1 1986b, Amitrano et a1 1986, 
Nagatani 1987b), localisation (Ioffe et a1 1985, Kohmoto et a1 1987) and dynamical 
system (Hentschel and Procaccia 1983, Halsey et a1 1986a). 

De Arcangelis et a1 (1985a, b, 1986) introduced a simple hierarchical model in 
order to discuss the voltage distribution in self-similar resistor networks analytically. 
Their model is constructed from a deterministic fractal lattice. Although deterministic 
fractal models have been very useful (Mandelbrot and Given 1984, Nagatani 1986a, 
b, 1987c), they lack one of the basic features of the natural statistical fractals. They 
are not random, and therefore the correlation length exponent v cannot be derived 
from the hierarchical model. Nagatani ( 1986c) has presented the regular-random 
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fractal model which was closely connected with the position-space renormalisation. 
The model can present the correlation length exponent and satisfy Coniglio’s relation 
(1982). Nagatani (1987a) derived the infinite set of exponents of the current distribution 
by making use of a position-space renormalisation method. Meir and Aharony (1988) 
found the multifractal exponents on the dilute Wheatstone bridge by using the cumulant 
real-space renormalisation group method. They investigated a difference between 
results on the specific non-random fractal (the Mandelbrot-Given curve) and averages 
over distributions of the specific random fractal (percolating cluster on the dilute 
Wheatstone bridge). De Archangelis et a1 have found the distribution function of 
current on the deterministic model. However, the distribution function of current is 
not analytically found in the percolating cluster on the real lattice. 

In this paper, we present the renormalisation group method to derive the multifrac- 
tality of current distribution. The present approach is the systematic development of 
the previous letter (Nagatani 1987a). We pay attention to the current distribution 
under the renormalisation transformation. We study how the current distribution is 
transformed by the renormalisation. We find the distribution function of the current 
by using the real-space renormalisation method. The multifractal exponents of current 
are derived from the current distribution function. We restrict ourselves to the bond 
percolation problem on the square lattice. In the percolation problem the renormalisa- 
tion group method is known to present the exact percolation probability p c  = (Stanley 
et a1 1982). By the use of the renormalisation method presenting the exact percolation 
threshold, we shall derive the current distribution and its scaling structure. In 0 2 we 
present a random fractal model in the hierarchical lattice to derive the current distribu- 
tion. One can picture to oneself the geometric structure in real-space renormalisation 
by making use of the hierarchical-random model. In 0 3, we derive the recursion 
relation of the current distribution under the real-space renormalisation. We obtain 
the current distribution by repeated application of this recursion relation. In § 4, we 
find the scaling structure of the current distribution. We obtain the a-f spectrum for 
the current distribution. Section 5 presents the summary. 

2. Hierarchical-random model 

We present the hierarchical-random model to mimic the geometric structure under the 
real-space renormalisation. The hierarchical-random model is just constructed by the 
fine-graining procedure. One can make the model by the iteration method. At each 
iteration one replaces each bond by one of the spanning clusters appearing in the cell 
under the renormalisation procedures. (For details see Nagatani ( 1 9 8 6 ~ ) ~ )  The model 
is known to satisfy all the conventional scaling relations between the critical exponents 
for cluster numbers and cluster structure (Nagatani 1986~).  In the hierarchical model 
the real-space renormalisation procedure can be exactly applied. The model also 
presents a fractal geometric picture for the real-space renormalisation group. The 
simplest model was presented in the earlier letter (Nagatani 1986~).  By this model we 
did not obtain the exact critical probability. Critical exponents were also poor. Here 
we extend the simple model to the more accurate one which presents the exact critical 
probability and good critical exponents. 

We consider spanning and non-spanning configurations appearing in the renormali- 
sation of the cell. We consider here the division of the lattice into cells with the scale 
factors b = 2  and 3 (see figure l ( a )  and ( b ) )  in the renormalisation procedure. The 
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Figure 1. Illustration of the dividing and rescaling of b (=2 ,3 ,$)  cells on the square lattice. 
( a )  A b = 2 cell, ( b )  a b = 3 cell, (c )  the cell-to-cell transformation from a b = 3 cell to a 
b = 2 cell. 

renormalisation method with the dividing cells presents the exact critical probability. 
We distinguish the spanning and non-spanning configurations of the cell. We make 
use of the spanning clusters as the generators for constructing the infinite cluster just 
above the percolation threshold. We consider a stepwise generation of the hierarchical- 
random model by using the iteration method. As an initiator, a bond is occupied with 
probability po and unoccupied with 1 -po .  If the bond is present, the bond is replaced 
with one of the spanning clusters in figure 2, and otherwise with one of the non-spanning 
clusters, where the occupation probability p1 is given by p1 = R - ' ( p 0 ) .  The function 
R( p )  indicates the renormalised occupation probability under the renormalisation 
transformation. The probability of which one of the spanning clusters is chosen is 
given by that appearing for each spanning cluster. Furthermore, the second-order 
generation is obtained by replacing each occupied bond with one of the spanning 
clusters and each unoccupied bond with one of the non-spanning clusters, where 
p 2  = R - ' ( p l ) .  The process is continued to the Nth-order generation. In the limit where 
N is sufficiently large, the resultant lattice approaches the percolation threshold. If 
p o  > p c  (where p c  is the critical probability), then the resultant lattice represents the 

( d )  (e)  i f) 

Figure 2. Spanning configurations that arise in the real-space renormalisation group for 
bond percolation on the square lattice. 
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geometric texture above the threshold. The geometric texture becomes the fractal in 
the range of length L: L<< [([ = b N ) .  The system obtained consists of the islands 
separated from the percolating network and a superlattice made by nodes separated 
by a distance [=  b N ,  connected by quasilinear links. The system is considered as a 
random fractal on a hierarchical lattice. In the lattice, the renormalisation group 
method can be exactly applied. For the b = 2 case, the geometric structure of our 
model is equivalent to that on the dilute Wheatstone bridge. 

3. The current distribution 

We pay attention to the infinite cluster on the hierarchical lattice constructed in § 2. 
The infinite cluster is the random fractal lattice with a hierarchical structure. We 
consider the distribution of the current on the hierarchical-random fractal. We give 
the analytical method to derive the distribution function of the current. We derive the 
recursion relation of the current distributions before and after the renormalisation. 
The current flowing on the random resistor network shows a fragmentation phenomenon 
(Pietronero and Siebesma 1986). Consider all the spanning configurations of the cell. 
Figure 2 indicates the configurations for the cell with the scale factor b = 2 .  The 
probability C, that a particular spanning configuration a appears is given by 
Ca = P ’ / R ~ ( P )  c b  =4p4(1-p)/R2(p) c, =p4(1 - m 2 ( p )  
c d  =6p3(1 - p l 2 / R 2 ( p )  Ce = 2p3(  1 - P )2/ ~ 2 (  P cf=2p2(1  - P ) ’ / R , ( P )  

(1) 
where R2( p )  = 2p5  - 5p4 + 2 p 3  + 2 p 2 .  R2( p )  represents the probability that a cell of size 
b = 2  is connected between the entrances and the exits. 

We calculate the currents carrying on each bond within the cell with the spanning 
configurations. When the total current carrying vertically through the cell is i, there 
are four bonds with the current fraction i / 2  and a bond with no current in configuration 
( a )  (figure 2 ) .  In configuration ( b ) ,  there is one bond with the current i, two bonds 
with i / 3  and one bond with 2 i / 3 .  In this way we can obtain all the current fraction 
within the cell with the spanning cluster. The current 2i  carrying through the cell ( a )  
breaks out on each bond by the fragmentation process and results in the current i. 
The current 32’ flowing through the cell ( b )  also breaks out on each bond and results 
in the current i on the two bonds in configuration ( b ) .  

We thus obtain the recursion relation between the current distributions f f l (  i )  and 
f n F 1 (  i )  before and after the renormalisation: 

f ( i )  = djA2(s, p ) S ( i  - sj)fn-l(j)  

= A2(1, p)fn-l(i) + A,(;, p ) f f l - 1 ( 2 4  + A&, ~ ) f ~ - ~ ( 3 i )  + A&, p ) f f l - 1 ( 3 i / 2 )  
(2) 

where A2(s, p )  indicates the mean number of bonds with the current fraction s. They 
are given by 
A,( 1, p )  = 1 x c b  + 2 x c d  f 3 x ce + 2 x cf 

= (lop’ -20p4+6p3 +4p2)/R2( p )  
A,(;, p ) = 4 x Ca + 4 x C, = 4p4/ R2( p ) 
A 2 ( f , p ) = 2 x  C b  =(-8p5+8p4)/R2(P) 
Az(3 ,p )  = Cb = (-4P5+4P4)/R2(P). 
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We now derive the distribution of current fraction. If a unit current is carrying through 
an Nth-order hierarchical lattice, the number of bonds carrying the current i =  
( 3 ) " 1 ( 9 ~ 2 ( $ ) ~ 3  is given by 

NIAZ($, P N )  N2A2(f,  P N )  N3 (3 1 
) ( N I (  N2 >( N3 

N N-NI N-Nl-N, 

x A2(lr p N )  N - N ~ - N 2 - N  

where p N  = R ; ' ( P ~ - ~ ) .  

At the percolation threshold the current distribution is given by 
In the limit where N is sufficiently large, p N  approaches the critical value p c  = 4. 

x ( N ! / N ,  !N2!N3!N4!)A2(1)N~AZ(~)N2AZ($)N3Az(f)N4 (4) 

where 

NI+ N2+ N3+ N4= N 

A2( 1)  = A,(;) = & A,($) = & A,($) = A .  
The fractal dimension of the hierarchical-random fractal is also given by 

dr=log[(5p5 - 16p4+ 12p3+4pZ)/R,(p)I,=,,,/log 2 

= log($)/log 2 = 1.7279.. . . (5) 

Similarly we can obtain the current distribution for the scale factor b = 3. The current 
distributions f , ( i )  and f,-]( i )  before and after the renormalisation are given by 

f ( i >  = c A3(j, p) f -AVj)  (6) 
j 

where A3(j, p )  represents the mean number of bonds with the current fraction j .  We 
express A,( j ,  p )  in terms of 

A3(j, P) = [BO(J)/R~(P)IP'~ + [Bl(j)/R3(p)lP12(1 -PI 

+[Bz(j)/R3(p)IP"(l - P ) 2 + .  * .+[B10(j)/R3(p)lp3(1 - p Y O  (7) 

where 

R3(p)=pI3+ 13p1'(1 -p)+78p1'(l  -p)z+283p10(1-p)3+677p9(1 - P ) ~  

+ 1078ps(l - P ) ~ +  1089p7(1 -p)6+627p6(1-p)7+209p5(1 - P ) ~  

+38p4(1 -p)'+3p3(1 - p ) l 0 .  

Bo( j )  represents the number of bonds with the current j within the spanning cell in 
which all the bonds are occupied. B,( j )  indicates the number of bonds with the current 
j within the spanning cells in which the n bonds are unoccupied and (13 - n )  bonds 
occupied. One can calculate B, ( j )  by finding the current fraction in each configuration 
appearing in the renormalised cell. 
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We can obtain the current distribution at the percolation threshold. The fractal 
dimension is also given by 

d f =  l o g ( w ) / l o g  3 = 1.8471.. . . (8) 
The fractal dimension obtained from the cell size b = 3 is close to the accurate value 
1.89 (Stauffer 1985). 

One can easily extend ( 6 )  to the case with any scale factor b. It is given by 

fn(i) =C Ab(j, P ) f - l ( i / j ) -  (9) 
j 

4. Scaling structure 

We shall derive the multifractal exponents of the current by using the distribution 
function of the current obtained in 0 3. Each bond of the percolating network can be 
characterised by the fraction of the total current flowing through it, i.e. f = I/&,,t ,  The 
moments of the current distribution and corresponding exponents fk can be defined by 

where f ( f )  is the number of bonds with a current fraction [ r b  is the set of the 
backbone bonds, ( ) represents the ensemble average and L indicates the system size. 

One multiplies (9) by the kth-order ik  of current and sums over all the possible 
values of current i. The recursion relation of the moments of the current is given by 

where [Xj A( j ,  f) j k ]  represents the kth-order moment ( j k )  of the current fraction j 
within the cell. The relationship (1 1) represents a random multiplicative process of 
the random variable j which is the current fraction within the cell. It is the most 
important feature of our approach, characterising the scaling structure-of the current 
distribution. From (1 1) we can construct an infinite set of exponents l k  : 

For the b = 2 cases, we obtain 

The exponents of backbone bonds, resistance and cutting bonds are given by to= 
1.5235. . . , f2  = 0.938 57. . . and fm = 0.700 43. . . . Also the correlation length exponent 
Y is given by 1/ v =log [dR2(p)/dp],,,,2/log 2. This agrees with the exponent fa. It 
is found that Coniglio's relation holds. The multifractal exponents (13) were derived 
by Meir and Aharony (1988) on the hierarchical Wheastone bridge lattice. The 
coincidence is due to the equivalence between the b = 2 cell and the unit of the 
Wheatstone bridge. Our method is general and can be extended to larger sizes of the 
cell. Similarly we can obtain the infinite set of exponents for the b = 3 case: 
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where A,( j ,  f) is given by (7) .  The exponents of backbone bonds, resistance and cutting 
bonds are given as fo = 1.5996. . . , = 0.970 15. . . and fa = 0.724 80. . . The reciprocal 
of correlation length exponent Y also agrees with the exponent of the cutting bonds: 

Y-' = l~g[dR,(p)/dp],,,,~/log 3 = log(-)/log 3 = fm.  (15) 

In table 1, we give the numerical values of f k .  Columns R G ( ~ +  11, R G ( ~  + 11, R G ( ~  + 2), 
H model and data indicate, respectively, the values obtained from the renormalisation 
group methods with the cell sizes b = 2,3 ,  #, the hierarchical model by de Arcangelis 
et al (1985a, b) and the data by simulation. Figure 3 shows the plot of the exponents 
fk  against k. Curves A, B and C show, respectively, the results obtained from the 
renormalisation group methods with the cell sizes b = 2 , 3  and #. 

Table 1. List of exponents from the renormalisation group approach with other sources:" 
de Arcangelis er a1 (1985 a, b); bde Arcangelis et a1 (1986);' Herrmann and Stanley (1984);d 
Herrmann et a1 (1984);e Lobb and Frank (1984);' Stauffer 1985). 

k ~ ~ ( 2 + 1 )  ~ ~ ( 3 + 1 )  ~ ~ ( 3 + 2 )  H model" Data 

-5 7.139 
-2 3.118 
-1 2.169 

0 1.523 
1 1.142 
2 0.938 
3 0.83 1 
4 0.775 
5 0.744 
6 0.727 

10 0.704 
CO 0.700 

15.096 
4.409 
2.454 
1.599 
1.183 
0.970 
0.860 
0.802 
0.770 
0.753 
0.729 
0.724 

28.697 
6.614 
2.942 
1.729 
1.253 
1.024 
0.908 
0.848 
0.815 
0.797 
0.772 
0.766 

4.533 
2.491 
1.938 
1.500 1.5Xb, 1.62' 
1.188 1.196b 
0.991 0.976b, 0.97d*e 
0.877 0.85Sb 
0.815 0.784b 
0.783 
0.766 
0.751 
(3 0.75' 

h 

Figure 3. The plot of the exponents & of the moments of the current distribution against 
k. Curves A, B and C indicate, respectively, the results obtained from the renormalisations 
with the scale factors b = 2, 3 and 4. 
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The values of exponents are effectively improved with the larger cell b = 3. One 
can take into account more possible configurations with the larger cell. The possible 
configurations of the spanning clusters for b = 3 are very many more than those for 
b = 2. The values obtained with b = 3 give better results in comparison with b = 2 .  
Accordingly, as k approaches larger negative values, the average (fk) is governed by 
a configuration with the smaller possible current. For large negative k, the result 
obtained with small-size renormalisation may be poor. To improve the result for large 
negative k, one may take into account the averaging procedure for k + --CO proposed 
by Meir and Aharony (1988). 

We consider the multifractal analysis of the self-similar resitor network. In general, 
for each value of k, there is a corresponding distinct value of f* = f( k )  which locates 
the peak value of the product fy(f). In the context of a finite-size scaling approach, 
let us now make the following scaling ansatze for f ( k )  and f ( f ( k ) ) :  

f( k )  - L!c.-.~ f( i( k ) )  - Lfk. (16) 

Table 2. List of numerical values of a and f obtained from the renormalisation group 
method with the scale factors b = 2, 3 and $ 

ak f k  

k b = 2  b = 3  b =$  b = 2  b = 3  b =$  

-5 2.187 4.587 8.689 
-2 1.789 3.427 6.228 
-1 1.499 1.980 2.802 

0 1.200 1.297 1.462 
1 0.977 1.017 1.085 
2 0.845 0.874 0.925 
3 0.776 0.802 0.847 
4 0.741 0.766 0.809 
5 0.723 0.748 0.790 
6 0.713 0.738 0.780 

10 0.702 0.726 0.768 
cc 0.700 0.724 0.766 

-0.294 
0.940 
1.370 
1.523 
1.419 
1.228 
1.059 
0.938 
0.858 
0.806 
0.723 
0.700 

-4.214 
-0.997 

1.199 
1.599 
1.476 
1.270 
1.094 
0.969 
0.887 
0.833 
0.749 
0.724 

-10.915 
-4.310 

0.905 
1.729 
1.572 
1.341 
1.152 
1.02 1 
0.936 
0.881 
0.795 
0.766 

L 

h 

Figure 4. The plot of the function ak against k. Curves A, B and C indicate, respectively, 
the results obtained from the renormalisations with the scale factors b = 2, 3 and 2. 
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Thus the exponent of cutting bonds is given by the maximum value of a. The highest 
value of the curve of the a-f spectrum gives the fractal dimension of the backbone. 
These relations are given by 

Table 2 indicates the numerical values of a and f: Figure 4 and 5 show the plots of 
f f k  and fk against k The a-f spectra are shown in figure 6 .  Curves A, B and C 
indicate, respectively, the results obtained from the renormalisations with the cell sizes 
b = 2 ,  3 and $. 

2 1 1 1 1 ' 1 1 1 1 1 1 1 1 1 1  - 
t 

i 

k 

Figure 5. The plot of the function fk against k. The curves indicate respectively the results 
obtained from the renormalisations with the scale factors b = 2, 3 and $. 

a 

Figure 6. The a-f  spectra for the multifractal structure of the current distribution. Curves 
A, B and C represent respectively the results of the 2 x 2 and 3 x 3 cells and the cell-to-cell 
transformation. 
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5. Summary 

We present the real-space renormalisation method to analyse the scaling structure of 
the current distribution in the self-similar resistor network just above the percolation 
threshold. We obtain the general method to derive the distribution function of the 
current. Under the renormalisation transformation the recursion relation for the current 
distribution is derived. We find the current distribution with use of the recursion 
relation. An infinite set of exponents is calculated to describe each of the moments 
of the current distribution. To describe the multifractal structure the a - f  spectra are 
derived from the Legendre transform of these exponents. Our exponents obtained by 
the relatively small-cell renormalisation ( b  = 3) are very close to the previous simulation 
data. 
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